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Abstract
In the previous papers (notably, Kodama Y 2004 J. Phys. A: Math. Gen. 37
11169–90, Biondini G and Chakravarty S 2006 J. Math. Phys. 47 033514), a
large variety of line-soliton solutions of the Kadomtsev–Petviashvili II (KPII)
equation was found. The line-soliton solutions are solitary waves which decay
exponentially in the (x, y)-plane except along certain rays. In this paper,
it is shown that those solutions are classified by asymptotic information of
the solution as |y| → ∞. The present work then unravels some interesting
relations between the line-soliton classification scheme and classical results in
the theory of permutations.

PACS numbers: 02.30.Ik, 02.10.Ox

1. The KPII equation and its line-soliton solutions

The Kadomtsev–Petviashvili (KP) equation

∂

∂x

(
−4

∂u

∂t
+

∂3u

∂x3
+ 6u

∂u

∂x

)
+ 3σ 2 ∂2u

∂y2
= 0, (1.1)

where u = u(x, y, t) and σ 2 = ±1, describes the evolution of small-amplitude, quasi-
two-dimensional solitary waves in a weakly dispersive medium [13]. The case σ 2 = −1
corresponding to positive dispersion is known as the KPI equation, whereas the negative
dispersion (σ 2 = 1) case is referred to as the KPII equation. The KP equation arises in many
physical applications including water waves and plasmas (see, e.g. [12] for a review). It is
a completely integrable system with remarkably rich mathematical structure which is well
documented in several monographs [1, 11, 16, 19, 21]. Particularly, it has been known that
the solutions of the KP equation can be expressed in terms of the τ -function [11, 26],

u(x, y, t) = 2
∂2

∂x2
log τ(x, y, t). (1.2)
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In this paper, we consider a class of solutions whose τ -function is given by the Wronskian
determinant [10, 26]

τ(x, y, t) = Wr(f1, . . . , fN) =

⎛
⎜⎜⎜⎝

f1 f2 · · · fN

f ′
1 f ′

2 · · · f ′
N

...
...

...

f
(N−1)
N f

(N−1)
2 · · · f

(N−1)
N

⎞
⎟⎟⎟⎠ , (1.3)

with f (i) = ∂if/∂xi , and where the functions {fn}Nn=1 are a set of linearly independent solutions
of the linear system

∂f

∂y
= ∂2f

∂x2
,

∂f

∂t
= ∂3f

∂x3
. (1.4)

In particular, we investigate the line-soliton solutions of the KPII equation, which are
real, non-singular solutions localized along certain directions in the (x, y)-plane, and decay
exponentially everywhere else. For example, a one-soliton solution is obtained by choosing
N = 1 in equation (1.3), and τ(x, y, t) = f (x, y, t) = eθ1 + eθ2 , where

θm(x, y, t) = kmx + k2
my + k3

mt + θm,0 (1.5)

with real parameters θm,0, km for m = 1, 2, and k1 < k2. The above choices yield the
traveling-wave solution

u(x, y, t) = 1
2 (k2 − k1)

2 sech2 1
2 (θ2 − θ1) = �(k · r + ωt), (1.6)

where r = (x, y). The wave vector k := (lx, ly) = (
k1 − k2, k

2
1 − k2

2

)
and the frequency ω

satisfy the dispersion relation,

− 4ωlx + l4
x + 3l2

y = 0. (1.7)

The solitary wave given by equation (1.6) is localized in the (x, y)-plane along the line
L : θ1 = θ2 whose normal has the slope c = ly/ lx = k1 + k2. The one-soliton solution is
characterized by two physical parameters, namely, the soliton amplitude a = k2 − k1 and
the soliton direction c = k1 + k2. The soliton direction can also be expressed as c = tan α,
where α is the angle, measured counterclockwise, between the line L and the positive y-axis.
Conversely, any given choice of the amplitude (a > 0) and direction of the soliton gives the
phase parameters k1 and k2 uniquely as k1 = 1

2 (c − a) and k2 = 1
2 (c + a). Note that when

c = 0 (equivalently, k1 = −k2) the solution in equation (1.6) becomes y-independent and
reduces to the one-soliton solution of the Korteweg–de Vries (KdV) equation.

General line-soliton solutions. Like KdV, the KPII equation admits multi-soliton solutions
which can also be constructed via the Wronskian formulation of equation (1.3) by choosing
M phases {θm}Mm=1 defined as in equation (1.5) with distinct real phase parameters k1 < k2 <

· · · < kM and then defining the functions

fn(x, y, t) =
M∑

m=1

anmeθm, n = 1, 2, . . . , N, (1.8)

which give finite dimensional solutions of equations (1.4). The constant coefficients anm define
the N × M coefficient matrix A := (anm), all of whose N × N minors must be non-negative
to ensure that the τ -function τ(x, y, t) has no zeros in the (x, y)-plane for all t, so that the
corresponding KPII solution u(x, y, t) resulting from equation (1.2) is non-singular.

However, the multi-soliton solution space of the KPII equation turns out to be much
richer than that of the (1+1)-dimensional KdV equation due to the dependence of the KPII
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Figure 1. Line-soliton solutions of the KPII equation illustrating different interaction patterns: (a)
a two-soliton solution, (b) a partially resonant (3, 3)-soliton and (c) a Miles resonance (Y-junction).
Here and in all following figures, the horizontal and vertical axes are, respectively, x and y, and
the graphs show contour lines of the solution u(x, y, t) = 2∂2

x log τ(x, y, t) for fixed t.

solutions on the additional spatial variable y. Asymptotically, as y → ±∞, there exist certain
(non-decaying) directions which are invariant in t, and along which the solution has the form
of a plane wave similar to the one-soliton solution in equation (1.6). These asymptotic solitary
wave structures, referred to as asymptotic line solitons in [2], have varying amplitudes and
directions depending on M,N and the values of the phase parameters k1, . . . , kM . More
significantly, the number N− of asymptotic line solitons as y → −∞ is in general different
from the number N+ of the asymptotic line solitons as y → ∞, with N− = M − N and
N+ = N . Such multi-soliton configurations derived from equation (1.8) are called (N−, N+)-
soliton solutions of KPII [2, 4]. For example, figure 1(c) exhibits a (2, 1)-soliton solution,
also known as the Miles resonance solution [18]. At the interaction vertex or Y-junction, the
three interacting line solitons with wave numbers ka and frequencies ωa (a = 1, 2, 3) satisfy
the fundamental three-wave resonance condition

k1 + k2 = k3, ω1 + ω2 = ω3. (1.9)

The (N−, N+)-soliton solutions exhibit a variety of time-dependent spatial interaction patterns
including the formation of intermediate line solitons in the (x, y)-plane [4, 15, 17]. In contrast
to these nontrivial interactions exhibited by the KPII solitons, the KdV multi-soliton solutions
experience only a phase shift after collision.

N-soliton solutions. When N− = N+ = N (i.e., when M = 2N ), the corresponding solutions
consist of the same number of asymptotic line solitons as y → ±∞. If in addition, the
direction and amplitude of each of the N line solitons as y → −∞ are pairwise equal to
each of the N line solitons as y → ∞, then the corresponding solutions are simply referred
to as the N-soliton solutions of the KPII equation. It will be evident from the discussions in
the following sections that each N-soliton solution can be regarded as a configuration of N
interacting asymptotic line solitons where the amplitude and direction of the nth line soliton
are given by

an = kjn
− kin , cn = kin + kjn

, n = 1, . . . , N. (1.10)

Thus, the nth line soliton is parametrized by a pair
(
kin , kjn

)
of distinct phase parameters with

1 � in < jn � 2N , or equivalently, by the index pair [in, jn].
The Y-junction solution found by Miles [18] is perhaps the earliest evidence of resonant

structure present in the line-soliton solutions of KPII. Subsequently, this solution was
reconstructed using different algebraic methods in several earlier works (see, e.g. [9, 20, 22]),
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and more general types of resonant line-soliton solutions of KPII were reported in some
recent works including [4, 17, 23]. The properties of the general line-soliton solutions were
systematically investigated in [2] where these solutions were characterized by developing an
asymptotic analysis of the τ -function. The N-soliton solutions were extensively studied in
[15]. In particular, an explicit characterization of the N-soliton solutions space in terms of
Grassmannian Gr(N, 2N) was presented for the first time in [15].

In this paper, we extend the work in [2] by providing a combinatorial description of the
general line-soliton solutions of KPII. Furthermore, we show that the class of the general line-
soliton solutions can be enumerated employing these combinatorial properties. The paper is
planned as follows. In section 2, we first review the asymptotic properties of the τ -function, the
asymptotic line solitons and their characterizations by distinct pairs of phase parameters for the
general (N,M−N)-solitons of KPII. Then we establish a one-to-one correspondence between
the (N,M − N)-soliton equivalence classes and certain type of permutations of the index set
{1, 2, . . . , M} called derangements (proposition 2.9 and definition 2.10). We also make some
remarks on those equivalence classes of solutions in terms of the positive Grassmann cells,
and find a generating function (polynomial) for (N,M − N)-soliton solutions (proposition
2.11). By way of an example of our general result, we give a comprehensive classification of
the (2, 2)-soliton solutions in section 3. In section 4.1, we show that the line-soliton solution
space of the KPII equation is divided into dual sub-classes of (N,M − N)- and (M − N,N)-
soliton solutions under the action of spacetime inversion (x, y, t) → (−x,−y,−t). We then
give a combinatorial interpretation of this discrete symmetry of the KPII equation. Next in
section 4.2, we consider the N-soliton solutions, and in section 4.3, we describe how to construct
such solutions starting only from the physical data set of N amplitudes and N directions of the
associated line solitons. We also show that there exists a one-to-one correspondence between
N-soliton solution space and the set of all fixed-point free involutions of the permutation
group of 2N elements. Finally, in section 4.4, we exhibit how the combinatorial properties
of the N-soliton solutions provide a further refinement of the N-soliton solution space
(proposition 4.10), and thus recover the results of [15].

2. The KPII τ -function and asymptotic line solitons

In this section, we investigate the general properties and asymptotic behavior of the
τ -function associated with the general line-soliton solutions of the KPII equation. As before,
we consider the Wronskian form of the τ -function given by equation (1.3), where the functions
{fn}Nn=1 are linear combinations of exponentials with M distinct phases as in equation (1.8).
Furthermore, we can assume without loss of generality that the phase parameters are ordered
as k1 < k2 < · · · < kM .

2.1. Properties of the τ -function

The Wronskian in equation (1.3) can be expressed as

τ(x, y, t) = det(A�K), (2.1)

where A = (anm) is the N × M coefficient matrix, � = diag(eθ1 , . . . , eθM ) and the M × N

matrix K is given by K = (
kn−1
m

)
,m = 1, 2, . . . ,M, n = 1, 2, . . . , N . Expanding the

determinant in equation (2.1) using the Binet–Cauchy formula yields the following explicit
form of the τ -function:

τ(x, y, t) =
∑

1�m1<...<mN �M

A(m1, . . . , mN) exp[θ(m1, . . . , mN)]
∏

1�s<r�N

(
kmr

− kms

)
, (2.2)
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where the phase combination is defined by

θ(m1, . . . , mN) := θm1 + θm2 + · · · + θmN
,

A(m1, . . . , mN) is the N × N minor of A obtained from columns 1 � m1 < · · · < mN � M ,
and the product term in equation (2.2) is the Van der Monde determinant obtained using the
rows 1 � m1 < · · · < mN � M of the matrix K in equation (2.1). The basic properties of the
τ -function following from equation (2.2) are listed below.

Property 2.1.

(i) The τ -function is a linear combination of real exponentials, where each exponential term
contains combinations of N out of M distinct phases given by θ(m1, . . . , mN). Any given
phase combination θ(m1, . . . , mN) actually appears in the τ -function if and only if the
corresponding minor A(m1, . . . , mN) is nonzero. Thus, there are at most

(
M

N

)
terms in

the τ -function.
(ii) If M = N , the corresponding τ -function in equation (2.2) contains only one exponential

term which generates the trivial solution u(x, y, t) = 0 of KPII via equation (1.2). Hence,
M > N for nontrivial solutions.

(iii) If rank(A) < N , then all the N × N minors of A vanish identically, leading to the
trivial case τ = 0. Moreover, for rank(A) = N , if all minors A(m1, . . . , mN) � 0 then
τ(x, y, t) > 0,∀(x, y, t) ∈ R

3. Therefore, the resulting solution u(x, y, t) of the KPII
equation is non-singular.

(iv) The transformation A → CA where C ∈ GL(N, R) corresponds to an overall rescaling
τ → det(C)τ , of the τ -function in equation (2.1), which leaves the solution u(x, y, t)

invariant. This GL(N, R) freedom can be exploited to choose the coefficient matrix A in
equation (1.8) to be in the reduced row-echelon form (RREF).

(v) The transformation A → AD,� → D−1� where D ∈ GL(M, R) leaves the τ -function
in equation (2.1) invariant. In particular, a diagonal matrix D with diagonal elements
dm > 0,m = 1, . . . ,M , leaves the functions {fn}N1 in equation (1.8) invariant by
simultaneously rescaling the mth column of A by dm, and shifting each phase constant in
equation (1.5) as θm,0 → θm,0 − log(dm).

(vi) If for any given n,m in equation (1.8), we take fn = eθm such that the nth row of A has only
one nonzero entry anm = 1, then the minors A(m1, . . . , mN) = 0,m /∈ {m1, . . . , mN }.
The resulting τ -function can be expressed as τ(x, y, t) = eθmτ0(x, y, t), where τ0(x, y, t)

contains at most M − 1 phases (all but θm) which appear in phase combinations of N − 1
distinct phases. It is then evident from equation (1.2) that τ(x, y, t) and τ0(x, y, t)

generate the same solution of KPII. Such τ -functions are reducible in the sense that they
can be effectively obtained from a Wronskian of N − 1 functions with M − 1 distinct
phases.

For the remainder of this paper, we will consider the coefficient matrix A to be in RREF.
Furthermore, to avoid trivial and reducible cases, and to ensure that the solution u(x, y, t)

of KPII resulting from the τ -function in equation (2.2) are non-singular, we will impose the
following restrictions on the coefficient matrix A.

Condition 2.2.

(1) Positivity: rank(A) = N < M and all nonzero minors of A are positive.
(2) Irreducibility: each column of A contains at least one nonzero element, and each row of

A contains at least one nonzero element in addition to the pivot (first nonzero) entry.

5



J. Phys. A: Math. Theor. 41 (2008) 275209 S Chakravarty and Y Kodama

Remark 2.3. The matrices satisfying condition 2.2(i) are called totally non-negative (TNN)
matrices. The classification of the (N−, N+)-soliton solutions is then given by the classification
of the N ×M irreducible TNN matrices A in RREF. From a more geometric perspective, each
TNN matrix parametrizes a unique cell in the TNN Grassmannian Gr+(N,M) (see, e.g.
[24]), and the classification of the soliton solutions corresponds to a further refinement of
the Schubert decomposition of Gr(N,M) into TNN Grassmann cells (see [15] for the case
M = 2N ). The refinement is given by a classification of the coefficient matrix A, and the
minors A(m1, . . . , mN) represent the Plücker coordinates of Gr(N,M). We will discuss the
geometric structure of this classification in a future communication [7].

2.2. Dominant phase combinations and asymptotic line solitons

The spatial structure of the solution u(x, y, t) is determined from the asymptotic behavior
of the τ -function in the (x, y)-plane and for finite values of t. Note that the τ -function
in equation (2.2) associated with an irreducible coefficient matrix A is a sum of real
exponentials with positive coefficients. If only one phase combination θ(m1, . . . , mN)(x, y, t)

in the τ -function is dominant in a certain region of the (x, y)-plane at a given time, then
τ ∼ exp(θ(m1, . . . , mN)). Consequently, the solution u(x, y, t) of KPII generated by the
τ -function (2.2) is exponentially small at all points in the interior of any dominant region,
and is localized at the boundaries where a balance exists between at least two dominant
phase combinations in the τ -function (2.2). Such boundary is identified by the equation
θ(m1, . . . , mN) = θ(m′

1, . . . , m
′
N), which defines a line segment in the (x, y)-plane for each

t. Note that this phenomenon also arises for the one-soliton solution (1.6), which is localized
along the line θ1 = θ2 corresponding to the boundary of the two regions of the (x, y)-plane
where θ1 and θ2 dominate. In the one-soliton case, these two regions are simply half-planes,
whereas in the general case the dominant regions could be bounded or unbounded (see, e.g.
figure 2). A detailed analysis of the asymptotic behavior of the τ -function was carried out in
[2], the main results are summarized below.

Proposition 2.4. The asymptotic properties of τ -function (2.2) for finite values of t, and for
generic values of phase parameters k1, . . . , kM , are as follows:

(i) The dominant phase combinations of the τ -function in adjacent regions of the (x, y)-
plane as y → ±∞, contain N − 1 common phases and differ by only a single phase. The
transition θ(i,m2, . . . , mN) �→ θ(j,m2, . . . , mN) between any two such dominant phase
combinations occurs along the line defined by [i, j ] : θi = θj , i �= j , where a single
phase θi in one dominant phase combination is replaced by a phase θj .

(ii) Along the single-phase transition line [i, j ], the dominant phase balance yields

τ(x, y, t) ∼ Cie
θ(i,m2,...,mN ) + Cj eθ(j,m2,...,mN ) (2.3a)

asymptotically as y → ∞ or as y → −∞, where the coefficients Ci, Cj depend on
appropriate Van der Monde determinants and non-vanishing minors of the coefficient
matrix A. The asymptotic behavior of the solution along [i, j ] is given by

u(x, y, t) ∼ 1
2 (kj − ki)

2 sech2 1
2 (θj − θi + δij ), (2.3b)

which defines an asymptotic line soliton.
(iii) The number of the asymptotic line solitons is invariant in time, and so are their amplitudes

and directions. In particular, the soliton direction is given by the normal direction of [i, j ],
which is ci,j = ki + kj , and the soliton amplitude is given by aij = |ki − kj |.

6
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In view of proposition 2.4, it is natural to denote an asymptotic line soliton by the
index pair [i, j ] which labels the asymptotic direction as well as the phase parameters in
equation (2.3b). The asymptotic properties of the τ -function reveal that there exists a certain
pairing (ki, kj ), 1 � i < j � M between the phase parameters, which in turn defines an
asymptotic line soliton. However, proposition 2.4 does not specify how to determine these
pairings in a given solution, or equivalently, which phase combinations are actually dominant in
a given τ -function as |y| → ∞. It is still necessary to identify the particular set of asymptotic
line solitons associated with any given τ -function of equation (2.2). For this purpose, we first
need a result derived in [2][lemma 3.1] regarding the dominant phases.

Lemma 2.5 (Dominant phase conditions). Along the line [i, j ] : θi = θj with i < j , the
phases θ1, . . . , θM satisfy the following relations, where θ := θi = θj :

(i) as y → ∞, θm < θ,∀m ∈ {i + 1, . . . , j − 1}, and θm > θ,∀m ∈ {1, . . . , i − 1, j +
1, . . . ,M};

(ii) as y → −∞, θm > θ,∀m ∈ {i + 1, . . . , j − 1}, and θm < θ,∀m ∈ {1, . . . , i − 1, j +
1, . . . ,M}.
The proof of this lemma based on the ordering k1 < · · · < kM and equation (1.5) is

straightforward. Lemma 2.5 provides a simple yet useful way to determine the dominant
phase combinations along the line [i, j ]. However, a given phase combination θ(m1, . . . , mN)

can only be dominant if it is in fact present in the τ -function of equation (2.2), i.e., if the
corresponding coefficient minor A(m1, . . . , mN) �= 0 in the τ -function. Therefore, in order to
obtain a complete characterization of the asymptotic line solitons, it is necessary to consider
the structure of the N × M coefficient matrix A in addition to lemma 2.5. Each asymptotic
line-soliton [i, j ] of a (N−, N+)-soliton solution of KPII is uniquely determined by a pair of
columns of the coefficient matrix A, as prescribed below. Once again, the details can be found
in [2].

Proposition 2.6. The (N−, N+)-soliton solution of KPII generated from the τ -function in
equation (2.2) has exactly N+ = N asymptotic line solitons as y → ∞ and N− = M − N

asymptotic line solitons as y → −∞. The necessary and sufficient conditions for an index
pair [i, j ] to identify an asymptotic line soliton are determined by the ranks of two sub-matrices
of A defined below in terms of their column indices

X[ij ] := [1, 2, . . . , i − 1, j + 1, . . . ,M] Y [ij ] := [i + 1, . . . j − 1].

The rank conditions are then as follows:

(i) Each asymptotic line soliton as y → ∞ is labeled by a unique index pair [en, jn] with
en < jn where {en}Nn=1 label the pivot columns of A. Moreover, if rank(X[enjn]) := rn,
then

rn � N − 1 and

rank(X[enjn]|en) = rank(X[enjn]|jn) = rank(X[enjn]|en, jn) = rn + 1.

(ii) An asymptotic line soliton as y → −∞ is labeled by a unique index pair [in, gn]
with in < gn where {gn}M−N

n=1 label the non-pivot columns of A. Moreover, if
rank(Y [ingn]) := sn, then

sn � N − 1 and

rank(Y [ingn]|in) = rank(Y [ingn]|gn) = rank(Y [ingn]|in, gn) = sn + 1.

Above, (Z|m, n) denotes the sub-matrix Z of A augmented by the columns m and n of A.
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Given the τ -function data, which consist of M distinct phase parameters k1, . . . , kM and a
matrix A satisfying condition 2.2, propositions 2.4 and 2.6 provide an explicit way to identify
all the asymptotic line solitons of the corresponding solution of the KPII equation. This
method is illustrated via the examples below.

Example 2.7. Figure 2(a) illustrates a (2, 1)-soliton Y-junction solution [18] describing
the resonant interaction of two line solitons mentioned in section 1 (see figure 1(c)). This
solution corresponds to N = 1,M = 3, and is generated by the τ -function and the coefficient
matrix A,

τ(x, y, t) = eθ1 + eθ2 + eθ3 , A = (1 1 1).

In this case we know from proposition 2.6 that the number of asymptotic line solitons as
y → ∞ and as y → −∞ are one and two, respectively. Applying the rank conditions
from proposition 2.6(i) to the pivot column e1 = 1, we see that for the soliton [1, j1] as
y → ∞, rank(X[1j1]) = 0 since N = 1. Hence, j1 = 3, so that the line soliton is [1, 3],
which (according to proposition 2.4) corresponds to the dominant balance of the phases θ1 and
θ3 in the τ -function. As y → −∞, proposition 2.6(ii) implies that for the non-pivot columns
g1 = 2 and g2 = 3 we should have rank(Y [i12]) = rank(Y [i23]) = 0 as well. Consequently,
i1 = 1, i2 = 2, and the resulting line solitons [1, 2], [2, 3] correspond to the dominant balance
of the phase pairs (θ1, θ2) and (θ2, θ3), respectively. Thus, the (x, y)-plane is partitioned in
three disjoint regions where each of the phases θ1, θ2 and θ3 dominates, and the solution is
localized along the phase transition lines which mark the asymptotic line solitons.

Example 2.8. Consider N = 2 and M = 4 corresponding to a (2, 2)-soliton solution as shown
in figure 2(b), and generated by the τ -function in equation (1.3) with

f1 = eθ1 − eθ4 , f2 = eθ2 + eθ3 + eθ4 , A =
(

1 0 0 −1
0 1 1 1

)
.

The pivot columns of A are labeled by the indices {e1, e2} = {1, 2}, and the non-pivot columns
by the indices {g1, g2} = {3, 4}. According to proposition 2.6, the number of asymptotic
line solitons are N+ = N− = 2. They are identified by the index pairs [1, j1], [2, j2] as
y → ∞, for some j1 > 1 and j2 > 2; and by the index pairs [i1, 3], [i2, 4] as y → −∞, for
some i1 < 3 and i2 < 4. We first determine the asymptotic line solitons as y → ∞ using
the rank conditions prescribed in proposition 2.6(i). For the first pivot column e1 = 1,
starting from j = 2 and then incrementing the value of j by one, we check the rank
of each sub-matrix X[1j ]. Proceeding in this way, we find that the rank conditions are
satisfied when j = 3: X[13] = (−1

1

)
. So rank(X[13]) = 1 = N − 1. Moreover,

rank(X[13]|1) = rank(X[13]|3) = rank(X[13]|1, 3) = 2. Thus, the first asymptotic line
soliton as y → ∞ is identified by the index pair [1, 3]. For e2 = 2, proceeding in a similar
manner as above we find that j = 3 does not satisfy the rank conditions (since X[23] has
rank 2) but j = 4 does. Therefore, the asymptotic line solitons as y → ∞ are given by the
index pairs [1, 3] and [2, 4].

Then we consider the asymptotics for y → −∞. Starting with the non-pivot column
g1 = 3, we apply the rank conditions in proposition 2.6(ii) to the column i = 2. Then, we have
Y [23] = ∅, and rank(Y [23]|2) = rank(Y [23]|3) = rank(Y [23]|2, 3) = 1. Hence, the pair
[2, 3] identifies an asymptotic line soliton as y → −∞. For g2 = 4, we consider i = 1, 2, 3
and find that the rank conditions are satisfied only for i = 1. In this case, Y [14] = (

0 0
1 1

)
,

so rank(Y [14]) = 1 = N − 1 and rank(Y [14]|1) = rank(Y [14]|4) = rank(Y [24]|1, 4) = 2.
Thus, the index pair [1, 4] identifies the other asymptotic line soliton as y → −∞.

8
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The dominant phase regions in the (x, y)-plane for this (2, 2)-soliton solution can also
be identified from proposition 2.4. First note that the dominant phase combination along
x → −∞ is given by θ(1, 2) = θ1 + θ2 for finite y. This follows from equation (1.5) and
the ordering k1 < k2 < k3 < k4 of the phase parameters. As the slope of the normal to the
transition line θi = θj , given by the direction cij = ki + kj , decreases from the negative x-axis
to the positive x-axis for y > 0, the asymptotic line solitons are sorted clockwise as [2, 4]
and [1, 3] as y → ∞. Thus, the dominant phase combinations associated with single-phase
transitions (cf proposition 2.4) as y → ∞ are given by

θ(1, 2)
2→4−→ θ(1, 4)

1→3−→ θ(3, 4).

When y < 0, the soliton direction parameter cij increases from the negative x-axis to
the positive x-axis. Consequently, the asymptotic line solitons as y → −∞ are sorted
counterclockwise as [2, 3] and [1, 4], and determine the dominant phase combinations in the
(x, y)-plane for y → −∞ as follows:

θ(1, 2)
2→3−→ θ(1, 3)

1→4−→ θ(3, 4).

The asymptotic line solitons and dominant phase combinations are shown in figure 2 where
the phase parameters are chosen such that c14 = 1 > c23 = 0. Note that in addition to the
unbounded dominant regions there is also a bounded region in the xy-plane where θ(2, 4) is
the dominant phase combination. The boundaries of this region are formed by the line solitons
[1, 4] and [2, 3] as y → −∞, together with the intermediate line-soliton [1, 2].

The above examples illustrate how to identify the asymptotic line solitons and the
dominant phase combinations of a (N−, N+)-soliton solution of KPII from the τ -function in
an algorithmic fashion. First, apply the rank conditions given in proposition 2.6 to each pivot
column and to each non-pivot column of the coefficient matrix A to identify the asymptotic
line solitons as y → ±∞. Next, note that for a τ -function in equation (2.2) associated
with a coefficient matrix A in RREF, the dominant phase combination as x → −∞ is
uniquely given by θ(e1, . . . , eN). This is due to the fact that the phase parameters are ordered
as k1 < k2 < · · · < kM , and the coefficient A(e1, . . . , eN) of the term eθ(e1,...,eN ) being
the minor of pivot columns, is lexicographically the first non-vanishing minor of A with
A(e1, . . . , eN) = 1. Since the line solitons are sorted according to their direction parameter
cij , the dominant phase combinations in the (x, y)-plane can then be determined from
proposition 2.4 starting from the dominant phase combination θ(e1, . . . , eN) as x → −∞.

2.3. Index pairing and derangements

We show here that the set of unique index pairings in proposition 2.6, {[en, jn]}Nn=1 ∪
{[in, gn]}M−N

n=1 identifying the asymptotic line solitons as |y| → ∞, has a combinatorial
interpretation. Let [M] := {1, 2, . . . , M} be the integer set and recall that {e1, . . . , eN } ∪
{g1, . . . , gM−N } is a disjoint partition of [M]. Define the pairing map π : [M] → [M]
according to proposition 2.6(i) and (ii) as

π(en) = jn, n = 1, 2, . . . , N, π(gn) = in, n = 1, 2, . . . , M − N, (2.4)

where en and gn are, respectively, the pivot and non-pivot indices of the coefficient matrix A.
Then one can show that the map π : [M] → [M] is a bijection, that is, π is a permutation of
the set [M]. It is sufficient to show that the image π([M]) is a set of distinct elements. First
assume the contrary, i.e., suppose π(l) = π(l′) = m for two distinct elements l, l′ ∈ [M]. Then

9
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Figure 2. Dominant phase combinations in different regions of the (x, y)-plane (labeled by
the indices in parentheses, i.e. (i, j) = θ(i, j)) and the asymptotic line solitons (labeled by
the indices in square brackets) for two different line-soliton solutions: (a) a (2, 1)-soliton with
(k1, k2, k3) = (−1, 0, 1

2 ) at t = 0; (b) a (2, 2)-soliton with (k1, . . . , k4) = (−1, − 1
2 , 1

2 , 2) at
t = 0.

consider the dominant phase combinations associated with the single-phase transitions (see
proposition 2.4(i)) starting with the θ(e1, . . . , eN) as x → −∞, proceeding clockwise, and
finally back to θ(e1, . . . , eN) after a complete revolution. There are altogether M such single-
phase transitions: N transitions as y → ∞ corresponding to the pivot indices {e1, . . . , eN },
and M − N transitions as y → −∞ corresponding to the non-pivot indices {g1, . . . , gM−N }.
Without loss of generality, if we assume that the transition l → m occurs before l′ → m,
then there must be an intermediate m → m′ transition for some m′ ∈ [M] in between those
two single-phase transitions. Now if θm ∈ θ(e1, . . . , eN) then the transition m → m′ must
occur before the l → m transition can take place. Consequently, the intermediate m → m′

transition can not occur as each transition occurs only once during a complete revolution in
the (x, y)-plane. On the other hand, if θm /∈ θ(e1, . . . , eN) then the m → m′ transition must
occur after the l′ → m transition, and again the intermediate m → m′ transition cannot take
place. Either way, we reach a contradiction implying that π : [M] → [M] is one-to-one, and
therefore a bijection, thus proving our claim. Note also that π has no fixed point because
π(en) > en, n = 1, . . . , N and π(gn) < gn, n = 1, . . . ,M − N . A permutation π with no
fixed point is called a derangement, and an element l ∈ [M] is called an excedance of π if
π(l) > l. We can summarize the above discussions as follows.

Proposition 2.9. The pairing map π defined by equation (2.4) is a derangement of [M] with
N excedances which are given by the pivot indices {e1, . . . , eN } of the coefficient matrix A in
RREF.

In example 2.7, the pivot index e1 = 1, and the non-pivot indices g1 = 2, g2 = 3 for the
coefficient matrix A, with M = 3. The soliton pairings are: [1, 3] as y → ∞, and [1, 2], [2, 3]
as y → −∞. The corresponding pairing map from equation (2.4) is given by

π =
(

1 2 3
3 1 2

)
in the bi-word notation of permutation, and π has only one excedance: {1}. In example 2.8,
M = 4, the pivot and non-pivot indices are e1 = 1, e2 = 2 and g1 = 3, g2 = 4, respectively.

10
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1 2 3 4 5 6 7 8

Figure 3. The open chord diagram for π = (46 523 817).

The pairing map

π =
(

1 2 3 4
3 4 2 1

)
corresponds to the line solitons [1, 3], [2, 4] as y → ∞, and [2, 3], [1, 4] as y → −∞ with
excedance set {1, 2}. The pairing map π can also be represented by an open chord diagram
associated with permutations (see [8]). For example, shown in figure 3 is the diagram for
π = (46 523 817) (using one-line notation for permutations).

The four upper chords in figure 3 originate from the four excedances {1, 2, 3, 6} with the
right arrows indicating the increasing order of the numbers. The upper chords correspond to the
asymptotic line solitons for y → ∞ with the pairings [1, 4], [2, 6], [3, 5], [6, 8]. Similarly,
the lower chords with reversed arrows indicate the line solitons for y → −∞, namely,
[1, 7], [2, 4], [3, 5], [7, 8]. Thus, this chord diagram represents a (4, 4)-soliton solution of
KPII. Note here that the [3, 5]-soliton appears both in y → ±∞ which corresponds to a
2-cycle (35) in the permutation π .

Proposition 2.9 furnishes a combinatorial characterization of the (N−, N+)-soliton
solutions of KPII as explained below.

Definition 2.10. Let S+ := {[en, jn]}Nn=1 and S− := {[in, gn]}M−N
n=1 denote the index sets

labeling the asymptotic line solitons as y → ∞ and as y → −∞, respectively. Then
two (N−, N+)-soliton solutions of KPII are defined to be in the same equivalence class if
their asymptotic line solitons are labeled by the identical sets S± of index pairs, where
|S+| := N+ = N and |S−| := N− = M − N .

Each equivalence class of (N−, N+)-soliton solutions of KPII is uniquely determined by a
derangement π as defined in proposition 2.9. Therefore, each equivalence class of soliton
solutions is also associated with a unique open chord diagram with N+ = N upper chords and
N− = M − N lower chords. Furthermore, in view of remark 2.3, each derangement of [M]
gives a unique parametrization of a TNN Grassmann cell in Gr+(N,M), denoted by W(π),
and whose dimension can be computed from the number of crossings of the corresponding
chord diagram [24, 28]. In particular, the dimension of the cell W(π) associated with a TNN
matrix satisfying condition 2.2 is given by [7]

dimW(π) = N + C+(π) + C−(π),

where the number of crossings C±(π) in the chord diagram is defined by [8]

C±(π) =
M∑
i=1

C±(i), where

{
C+(i) := {j : j < i < π(j) < π(i)},
C−(i) := {j : j > i � π(j) > π(i)}. (2.5)

11
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(Note that the above definitions of C±(i) are switched from those given in [8].) For the example
in figure 3, the chord diagram associated with π = (46 523 817) has C+(π) = 2, C−(π) = 2,
and the corresponding Grassmann cell in Gr+(4, 8) has dimension 8 = 4 + 2 + 2. The top
(maximal) dimensional cell in Gr+(4, 8) of dimension 16 = 4 × 4 corresponds to a chord
diagram with the maximum number of crossings, i.e. πtop = (56 781 234) = (15)(26)(37)(48)

with C+(πtop) = C−(πtop) = 6, and dim W(πtop) = 16 = 4 + 6 + 6. An equivalence class of
(N−, N+)-soliton solutions of KPII with a given pairing map π can thus be associated with
a unique TNN Grassmann cell W(π), and the number of free variables parametrizing the
(N−, N+)-soliton solution space is given by dim W(π). We next proceed to calculate the total
number of (N−, N+)-soliton equivalence classes for given values of M and N, and enumerate
these equivalence classes according to the dimensions of their solution spaces.

Let SM denote the permutation group of [M], and let DM ⊂ SM be the set of all
derangements of [M]. Then the derangements can be enumerated according to the number of
excedances e(π) of π by the generating polynomial

DM(p) =
∑

π∈DM

pe(π) =
M−1∑
N=1

DN,MpN, M � 1,

where the coefficients DN,M denote the number of derangements of [M] with N excedances.
The total number of derangements of SM is then given by |DM | = DM(1). The explicit
formula for the derangement polynomial DM(p) is obtained from the exponential generating
function [25] with D0(p) := 1,

D(p, z) =
∞∑

M=0

DM(p)
zM

M!
= 1 − p

ezp − pez
. (2.6)

The first few polynomials are given by D1(p) = 0,D2(p) = p,D3(p) = p + p2,D4(p) =
p + 7p2 + p3. Moreover, the polynomials DM(p) are symmetric, that is, its coefficients
satisfy

DN,M = DM−N,M, N = 1, 2, . . . , M − 1. (2.7)

This and various other properties of the derangement polynomial DM(p) can be found in [25].
Note that equation (2.7) is equivalent to the relation

pMDM(p−1) = DM(p),

which in turn follows from the symmetry

D(p−1, zp) = D(p, z)

of the exponential generating function, and can be verified directly from equation (2.6).
The above formulae give the number DN,M of equivalence classes for the (N−, N+)-

solitons of KPII for a given M = N− + N+ and N = N+. Thus, when M = 3, there
are only two classes of line-soliton solutions, namely, the (2, 1)-soliton as in example 2.7,
and also (1, 2)-solitons which are related to the (2, 1)-solitons by the inversion symmetry:
(x, y, t) → (−x,−y,−t). When M = 4, there are one type each of the (3, 1)- and
(1, 3)-soliton solutions related via the inversion symmetry, but also seven distinct types of
(2, 2)-soliton solutions. It is also possible to obtain a further refinement of the total number
of soliton equivalence classes by introducing a q-analog of the derangement number DN,M ,
namely,

DN,M(q) =
N(M−N)∑

r=N

Dr,N,Mqr ,

12
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where Dr,N,M is the number of derangements of [M] with N excedances, and r − N crossings
as defined in equation (2.5). Then, DN,M(q) is the generating polynomial for the Grassmann
cells in Gr+(N,M) corresponding to the irreducible TNN matrices satisfying condition 2.2,
and Dr,N,M is the number of those TNN cells of dimension r. The upper limit N(M − N) in
the sum gives the dimension of the top cell in Gr+(N,M). Equivalently, Dr,N,M then gives
the number of (N−, N+)-soliton equivalence classes with N+ = N,N− = M − N , and with r
free parameters. Moreover, the total number of (N−, N+)-soliton equivalence classes is given
by DN,M(q = 1) = DN,M .

It is interesting to note that DN,M(q) is related to a q-analog of the Eulerian number [28],

EN,M(q) = qM−N2−N

N−1∑
i=0

(−1)i[N − i]Mq qNi

((
M

i

)
qN−i +

(
M

i − 1

))
,

where [N ]q := 1+q+q2 +· · ·+qN−1 is the q-analog of the number N. The polynomial EN,M(q)

was recently introduced in [28] where a rank generating function for the cells in Gr+(N,M)

was derived by building on the work of [24]. It follows from [8, 28] that the coefficient of qr

in EN,M(q) is the number of permutations of [M] with N weak excedances, and whose chord
diagrams have r − N crossings as defined in equation (2.5). Note that l ∈ [M] is called a
weak excedance of a permutation π ∈ SM if π(l) � l. The following result gives the relation
between the polynomials DN,M(q) and EN,M(q).

Proposition 2.11. For fixed N+ = N,N− = M − N , the generating polynomial for the
(N−, N+)-soliton equivalence classes according to the dimension of their solution spaces is
given by

DN,M(q) =
N−1∑
j=0

(−1)j
(

M

j

)
EN−j,M−j (q),

where Ek,n(q) are the Eulerian polynomials defined above.

Proof. Let E(N,M) denote the set of all permutations of [M] with N weak excedances, and let
D(N,M) ⊂ DM denote the derangements of [M] with N excedances. Then the polynomials
EN,M(q) and DN,M(q) are given in terms of the number of crossings c(π) of the permutation
π as

EN,M(q) = qN
∑

π∈E(N,M)

qc(π), DN,M(q) = qN
∑

π∈D(N,M)

qc(π).

Note that for each n � N − 1, an element of E(N,M) can be obtained by adding n fixed
points to the corresponding element of the derangement set D(N − n,M − n). Then for
N ′ = N − n,M ′ = M − n,

EN,M(q) = qN
∑

S⊂[M],
|S|=n

∑
π∈D(N ′,M ′)

qc(π) =
N−1∑
n=0

(
M

n

)
DN−n,M−n(q).

Inverting the above formula yields the desired result. �

Proposition 2.11 provides an explicit formula for enumerating the (N+, N−)-soliton
equivalence classes according to the dimensions of the associated Grassmann cells in
Gr+(N,M). For example, when M = 4 and N = 2, proposition 2.11 yields D2,4(q) =
q4 + 4q3 + 2q2. This implies that there are one cell of dimension 4 (top cell), four cells
of dimension 3 and two cells of dimension 2. The Gr+(2, 4) case will be discussed in the
following section.
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Figure 4. The open chord diagrams for the seven equivalence classes of (2, 2)-soliton solutions.

It turns out that the line-soliton solutions of KPII possess several other combinatorial
properties which play significant roles in their classification scheme. Some of these properties
were addressed in [15] (see also [3]). In this paper, we will present these combinatorial
structures underlying the line-soliton solutions from an algebraic perspective in section 4.

3. (2, 2)-Soliton solutions

In this section, we study those line-soliton solutions of KPII which admit a pair of asymptotic
line solitons as |y| → ∞. But in general, the pair of line solitons as y → ∞ differ from those as
y → −∞ in their amplitudes and directions. We call these the (2, 2)-soliton solutions, which
include the two-soliton solutions as well. According to the results of section 2.2 regarding
the asymptotic properties of the τ -function, these solutions are specified by prescribing the
distinct phase parameters {k1, . . . , k4} and the 2 × 4 coefficient matrix A. The τ -function of
any (2, 2)-soliton is given by

τ(x, y, t) =
∑

1�r<s�4

(ks − kr)A(r, s) eθr +θs , (3.1)

where A(r, s) denotes the 2 × 2 non-negative minors of the matrix A.

3.1. Classification of (2, 2)-soliton solutions

For a given set of phase parameters {k1, . . . , k4}, all possible equivalence classes of (2, 2)-
soliton solutions can be completely enumerated by the derangements of the index set [4] with
two excedances. Recall from section 2.3 that there are altogether seven distinct equivalence
classes of (2, 2)-soliton solutions given by the coefficient D2,4 of p2, in the derangement
polynomial D4(p). The seven equivalence classes can be further enumerated by the q-
derangement number D2,4(q) = q4 + 4q3 + 2q2 according to the number of free parameters
spanning the solution space of each equivalence class. The coefficients 1, 4, 2 in D2,4(q)

correspond to the number of (2, 2)-soliton equivalence classes spanned, respectively, by 4, 3
and 2 free parameters. This is illustrated in figure 4 by the open chord diagrams associated
with the (2, 2)-soliton solutions.The number sequence below each diagram in figure 4 is
the one-line notation for the corresponding permutation π which also designates a certain
TNN cell W(π) in Gr+(2, 4). The left diagram with two crossings corresponds to the top
cell of dimension 4; the middle four diagrams with one crossing in each correspond to the
dimension 3 cells; while the last two diagrams have no crossing, and correspond to the cells of
dimension 2 in Gr+(2, 4). We verify these combinatorial results below by directly analyzing
the (2, 2)-soliton coefficient matrices A which represent the TNN cells in Gr+(2, 4).
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(a) (b)

(c) (d)

Figure 5. Two different (2, 2)-soliton solutions of KPII with phase parameters (k1, . . . , k4) =(−1,− 1
2 , 1

2 , 2
)
. The first solution with π = (3421) at t = −16 and t = 16 is shown, respectively,

in (a) and (b); while (c) and (d) represent the second solution with π = (4312) at t = −16 and
t = 16. Note the spacetime reversal symmetry relating the two solutions in (a), (d) and in (b), (c).

The (2, 2)-soliton solutions arise from one of the following two irreducible coefficient
matrices in RREF:

A1 =
(

1 0 −a −b

0 1 c d

)
or A2 =

(
1 a 0 −b

0 0 1 d

)
(3.2)

with arbitrary non-negative parameters a, b, c, d. We classify them according to the number
of independent positive parameters in the coefficient matrix A1 or in A2. Note that the matrices
in equations (3.2) identify certain Schubert cells of Gr(2, 4). A further refinement of those
Schubert cells is given by the TNN Grassmann cells classified below.

Four positive parameters. There is one such case, which corresponds to the matrix A1 in
equation (3.2) with A1(34) = bc − ad > 0. Note that all six exponential terms are present in
the τ -function in equation (3.1). From proposition 2.6, one finds that the pair of asymptotic
line solitons are the same as |y| → ∞ with index pairs ([1, 3], [2, 4]). The associated pairing
map given by the permutation is π = (3412) = (13)(24). Thus, this case corresponds to
an equivalence class of two-soliton solutions where each asymptotic line soliton as y → ∞
has identical amplitude and direction to another asymptotic line soliton as y → −∞. The
two-soliton solutions will be discussed further in the following subsection.

Three positive parameters. There are two possibilities, namely, A2 with nonzero parameters
a, b, d, and A1 with three free parameters. Consider A1 first. In this case neither b nor c
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can vanish in A1, else A1(34) < 0. Hence, a three-parameter family of the matrix A1 with
non-negative maximal minors arises in three possible ways, namely, a = 0, or d = 0, or
A1(34) = 0 but neither of a, b, c, d is zero. That is,

(i) A1 =
(

1 0 0 −b

0 1 c d

)
, (ii) A1 =

(
1 0 −a −b

0 1 c 0

)
,

(iii) A1 =
(

1 0 −a −b

0 1 c d

)
with A1(34) = 0. (3.3)

Case (i) in equation (3.3) gives rise to a (2, 2)-soliton solution with asymptotic line-soliton
pairs ([2, 4], [1, 3]) as y → ∞, and ([2, 3], [1, 4]) as y → −∞. The associated pairing
map is given by π1 = (3421). The second matrix in equation (3.3) corresponds to another
(2, 2)-soliton solution whose asymptotic line-soliton pairs are ([1, 4], [2, 3]) as y → ∞,
and ([1, 3], [2, 4]) as y → −∞. These two solutions are related via spacetime reversal
(x, y, t) → (−x,−y,−t) as shown in figure 5. Furthermore, the pairing map for the second
solution π2 = (4312) satisfies π2 = π−1

1 . The last case in equation (3.3) yields a (2, 2)-soliton
with asymptotic line soliton pairs ([2, 4], [1, 2]) as y → ∞, and ([1, 3], [3, 4]) as y → −∞,
which determine the pairing map π3 = (2413). Like the previous two cases, case (iii) is
also related via a spacetime reversal to another (2, 2)-soliton solution which is associated
with the coefficient matrix A2 with three positive parameters as in equation (3.2). Thus, A2

corresponds to the asymptotic line-soliton pairs ([1, 3], [3, 4]) as y → ∞ and ([2, 4], [1, 2])
as y → −∞, with the pairing map π4 = (3142) = π−1

3 .

Two positive parameters. It should be clear from equation (3.2) that if either b = 0 or c = 0
in A1, it cannot satisfy condition 2.2. So, A1 will contain precisely two free parameters if and
only if a = d = 0. Similarly, A2 in equation (3.2) will have two free parameters if and only
if b = 0. Each of the nonzero parameters b, c in A1, and a, d in A2 can be rescaled to unity
without loss of generality, by utilizing the gauge freedom described in property 2.1(v). The
matrices resulting in this way from A1 and A2 are denoted by AP and AO, respectively, and
are presented in equation (3.4) below. Each coefficient matrix produces an equivalence class
of two-soliton solutions as |y| → ∞ with asymptotic soliton pairs ([1, 4], [2, 3]) for AP with
πP = (4321), and ([1, 2], [3, 4]) for AO with πO = (2143).

3.2. Equivalence classes of two-soliton solutions

As noted in the previous subsection, there are three types of two-soliton solutions. They will
be referred to as O-, T- and P-types (following the terminology introduced in [15]) below.
These are identified by the canonical coefficient matrices

AO =
(

1 1 0 0
0 0 1 1

)
, AT =

(
1 0 −1 −1
0 1 x1 x2

)
, AP =

(
1 0 0 −1
0 1 1 0

)
,

(3.4)

with x1 > x2 > 0 in AT. Up to rescaling of columns, the above matrices were also obtained
as special subcases of the classification presented in section 3.1. AO describes O-type two-
solitons, with asymptotic line solitons [1, 2] and [3, 4], AT describes T-type resonant two-
solitons with asymptotic line solitons [1, 3] and [2, 4] and AP describes P-type two-solitons
with asymptotic line solitons [1, 4] and [2, 3]. A distinctive feature of the pairing map π of a
two-soliton solution is the fact that π is an involution satisfying π = π−1. As a result, π can be
expressed as a product of disjoint 2-cycles (see, e.g. [5]). For the permutation group S4, there
are only three such involutions corresponding to the total number of disjoint partitions of [4]
into two pairs. In cycle notation, these involutions are given by πO = (12)(34), πT = (13)(24)
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Figure 6. Three different two-soliton solutions of KPII with the same phase parameters
(k1, . . . , k4) = (−2,− 1

2 , 0, 1), illustrating the three equivalence classes: (a) O-type two-soliton

solution, yielding (c1, c2) = (− 5
2 , 1) and (a1, a2) = ( 3

2 , 1); (b) T-type two-soliton solution,
yielding (c1, c2) = (−2, 1

2 ) and (a1, a2) = (2, 3
2 ); (c) P-type two-soliton solution, yielding

(c1, c2) = (−1, − 1
2 ) and (a1, a2) = (3, 1

2 ). (Note that for this P-type solution c[1,4] < c[2,3].)

and πP = (14)(23) for the O-, T- and P-type two-soliton solutions, respectively. The 2-cycles
are also evident from the chord diagrams illustrated in figure 4 where the extreme left (3412)
diagram corresponds to the T-type two-soliton, while the extreme right diagrams (4321) and
(2143), respectively, represent the P- and O-type two-soliton equivalence classes.

Figure 6 shows a representative solution for each of the three equivalence classes with
the same phase parameters k1, . . . , k4. Note that the O- and P-type solitons interact via an
X-junction (ignoring the phase shifts), while the T-type solitons interact via four Y-junctions
connecting the four asymptotic line solitons to four intermediate segments. Each of these
intermediate segments satisfy the nonlinear dispersion relation (1.7), and at each Y-junction
the resonance condition (1.9) is satisfied. Thus each intermediate segment is also a line-
soliton. For example, in figure 6(b) the asymptotic line soliton [1, 3] (as y → −∞) forms
the intermediate line solitons [1, 2] and [2, 3] at the bottom left Y-junction. The line-soliton
[2, 3] connects with the asymptotic line-soliton [2, 4] (as y → ∞) and the line-soliton [1, 2]
connects with the asymptotic line soliton [2, 4] (as y → −∞). Similarly, the asymptotic
line soliton [1, 3] (as y → ∞) forms the intermediate line solitons [1, 4] and [3, 4] at the
top right Y-junction. The line-soliton [3, 4] connects with the asymptotic line-soliton [2, 4]
(as y → ∞) and the line-soliton [1, 4] connects with the asymptotic line soliton [2, 4] (as
y → −∞).

An important distinction among the three types of two-soliton solutions is that they cover
different regions of the soliton parameter space. Suppose (a1, c1) and (a2, c2) are the soliton
parameters of the asymptotic line solitons of each type with the same set of distinct phase
parameters. Since the phase parameters are ordered: k1 < · · · < k4, the soliton parameters
satisfy the following relations which can be easily verified using equations (1.10).

(i) For an O-type two-soliton solution c2 > c1 and c2 − c1 > a1 + a2.
(ii) For a T-type two-soliton solution c2 > c1 and |a1 − a2| < c2 − c1 < a1 + a2.

(iii) For a P-type two-soliton solution a2 > a1 and |c2 − c1| < a2 − a1.
(iv) (c2 − c1)O > (c2 − c1)T > |c2 − c1|P, (a1 + a2)O < (a1 + a2)T = (a1 + a2)P and

|a2 − a1|O = |a2 − a1|T < (a2 − a1)P.

Note that for O- and T-type solutions the soliton directions are ordered, while for P-type
solutions the amplitudes are ordered. Any choice of the soliton parameters {(ai, ci)|ai > 0}2

i=1
would lead to one of the three types of two-soliton solutions provided that {c1 ± a1, c2 ± a2}
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are distinct real numbers. Thus, the three types of two-soliton solutions divide the soliton
parameter space into disjoint sectors bounded by the hyperplanes |c2 − c1| = a1 + a2 and
|c2 − c1| = |a1 − a2|. At each boundary between two disjoint regions of the soliton parameter
space, two of the phase parameters coincide. In such a situation, it can be shown (by taking
suitable limits) that the two-soliton solution degenerates into a Y-junction [4, 15].

Yet another difference is in the phase shifts experienced by the asymptotic line solitons
of each type. The position of an asymptotic line-soliton [i, j ] is determined by the dominant
phase combinations across the soliton and from the asymptotic formulae (2.3a) and (2.3b).
The pairs of dominant phase combinations across the soliton [i, j ] as y → ∞ and as y → −∞
are distinct from each other (see, e.g. figure 6). This fact gives rise to the phase (position) shift
�ij = δ+

ij − δ−
ij for the asymptotic line-soliton [i, j ]. Since the asymptotic positions δ±

ij have
the same linear dependence on time t, the phase shift �ij is independent of t. The dominant
phase combinations across an asymptotic line-soliton in each of the three types of two-soliton
solutions can be determined from the asymptotic analysis of section 2 and are shown in figure
6. Then the soliton phase shifts computed using the parameters (a1, c1), (a2, c2) and the
canonical coefficient matrices in equation (3.4) are given by

�O = log
(c1 − c2)

2 − (a1 − a2)
2

(c1 − c2)2 − (a1 + a2)2
= �P,

�T = log
(c1 − c2)

2 − (a1 − a2)
2

(c1 − c2)2 − (a1 + a2)2
+ log

(
x1

x2
− 1

)
.

(3.5)

The phase shifts experienced by the pair of asymptotic line solitons are of opposite signs in
each of the three cases. Above, we assumed that c1 �= c2 (i.e., the solitons are not parallel),
then � denotes the phase shift of the soliton with the direction parameter c2 where c2 > c1. For
non-resonant (O- and P-types) two-soliton solutions, phase shift expressions in (3.5) have only
one and the same term which depends symmetrically on the soliton parameters. However, it
is easy to verify from the various inequalities mentioned above, among the soliton parameters
that �O is always positive while �P is always negative. For resonant two-soliton solutions
there is an additional term that depends on the free parameters x1, x2 of the coefficient matrix
AT in equation (3.4). In this case, the phase shift �T is not sign-definite unlike the other two
cases.

4. Duality and N-soliton solutions

In the previous section, we described two types of equivalence classes of line-soliton solutions
of KPII: (i) the (2, 2)-solitons where the sets S± (cf definition 2.10) of asymptotic line solitons
as y → ±∞ are distinct and (ii) the two-soliton solutions with S− = S+. Furthermore, we
noted that there are pairs of distinct equivalence classes of (2, 2)-soliton solutions related
via spacetime reversal (cf figure 5). The general (N−, N+)-soliton solutions can be also
categorized in a similar fashion according to whether the sets of asymptotic line solitons S+

and S− are distinct, or if S− = S+. In the first case, pairs of equivalence classes of solutions
are related by spacetime reversal, while the latter corresponds to the special case of N-soliton
solutions to be discussed in this section.

4.1. Duality of line solitons

The KPII equation (1.1) is invariant under the inversion (x, y, t) → (−x,−y,−t).
Consequently, if u(x, y, t) is a (N−, N+)-soliton solution of KPII with given sets S± of
asymptotic line solitons and with N− = M − N and N+ = N , then u(−x,−y,−t) is a
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(N,M − N)-soliton solution with reversed sets S∓ of asymptotic line solitons. We refer to
the solutions u(x, y, t) and u(−x,−y,−t), as well as their respective equivalence classes
as dual to each other. Let τN,M(x, y, t) denote the τ -function in equation (2.2), generating
the solution u(x, y, t) via equation (1.2), then the solution u(−x,−y,−t) will be generated
by τN,M(−x,−y,−t) as equation (1.2) remains invariant under (x, y, t) → (−x,−y,−t).
Note, however, that τN,M(−x,−y,−t) does not have the form given by equation (2.2), but it
is indeed possible to construct a certain τ -function τM−N,M(x, y, t) from τN,M(−x,−y,−t)

that is dual to τN,M(x, y, t). We describe below how to construct the function τM−N,M from
τN,M .

First, we obtain a coefficient matrix for the τ -function τM−N,M from the N ×M matrix A

associated with τN,M(x, y, t). Since A is of full rank, its rows form a basis for a N-dimensional
subspace W of R

M . Let W⊥ be the orthogonal complement of W with respect to the standard
inner product on R

M , and let A′ be a (M − N) × M matrix whose rows form a basis for
W⊥. Clearly, A′ is not unique, but a particular choice for A′ is as follows: suppose the
pivot and non-pivot columns of A in RREF are represented by the identity matrix IN and the
N × (M − N) matrix G, respectively, then

A = [IN,G]P ⇒ A′ = [−GT , IM−N ]P, (4.1)

where GT is the matrix transpose of G, and P is a M × M permutation matrix satisfying
P T = P −1. It can be directly verified from equation (4.1) that AA′T = 0, which constitute
the orthogonality relations among the row vectors of A and A′. Moreover, it was shown in [2]
that the N × N minors of A and the (M − N) × (M − N) minors of the matrix

B ′ := A′E, E := diag(−1, 1,−1, . . . ,±1)

are related as

A(m1, . . . , mN) = (−1)σ det(P )B ′(l1, . . . , lM−N),

where σ = M(M + 1)/2 + N(N + 1)/2 and {m1,m2, . . . , mN } is the complement of
{l1, l2, . . . , lM−N } in [M]. The factor (−1)σ det(P ) = ±1, which depends only on A, can
be rescaled by an orthogonal transformation B ′ → OB ′, det(O) = ±1, so that the maximal
minors of the rescaled matrix

B := OB ′ = O[−GT , IM−N ]PE (4.2a)

satisfy the precise complementarity conditions

A(m1, . . . , mN) = B(l1, . . . , lM−N). (4.2b)

Hence, if all maximal minors of A are non-negative, then the same holds for B.
The (M − N) × M matrix B plays the role of a coefficient matrix for the τ -function

τM−N,M(x, y, t) which is related to the function τN,M(−x,−y,−t). Indeed, if we initially
set θm,0 = 0,∀m = 1, . . . ,M in equation (2.2) using property 2.1(v), then under the
transformation (x, y, t) → (−x,−y,−t), equation (2.2) yields

τN,M(−x,−y,−t) = exp[−θ(1, . . . , M)]τ ′(x, y, t).

Using equation (4.2b) and taking the sum over the complementary indices l1, . . . , lM−N

(instead of m1, . . . , mN ), the function τ ′(x, y, t) can be expressed as

τ ′(x, y, t) =
∑

1�l1<...<lM−N �M

V (m1, . . . , mN)B(l1, . . . , lM−N) exp[θ(l1, . . . , lM−N)], (4.3)

where

V (m1, . . . , mN) =
∏

1�s<r�N

(
kmr

− kms

)
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are the Van der Monde coefficients as in equation (2.2). Next, if we introduce new phase
constants by

θm,0 =
∑
r �=m

ln|kr − km|, m = 1, . . . ,M,

which satisfy the identity

exp
[
θl1,0 + · · · + θlM−N ,0

] = V (l1, . . . , lM−N)V (1, 2, . . . , M)

V (m1, . . . , mN)
,

and make the replacement: θm → θm + θm,0 in equation (4.3), we finally obtain the dual
τ -function

τM−N,M(x, y, t) := τ ′(x, y, t)

V (1, . . . ,M)
=

∑
1�l1<...<lM−N �M

V (l1, . . . , lM−N)B(l1, . . . , lM−N)

× exp[θ(l1, . . . , lM−N)]. (4.4)

It is clear from equations (1.2) and (4.4) that the functions τN,M(−x,−y,−t), τ ′(x, y, t) and
τM−N,M(x, y, t) give rise to the same solution u(−x,−y,−t) of KPII. Thus we have the
following.

Proposition 4.1.

(i) The equivalence classes of solutions generated by the N × M coefficient matrix A and
the (M − N) × M matrix B defined by equation (4.2a) are dual to each other. If a
(M − N,N)-soliton solution u(x, y, t) of KPII belongs to a certain equivalence class,
then its dual equivalence class contains the (N,M −N)-soliton solution u(−x,−y,−t).

(ii) Let {m1, . . . , mN } and {l1, . . . , lM−N } be a disjoint partition of the integer set [M], then
θ(m1, . . . , mN) is a phase combination present in the τ -function τN,M if and only if
θ(l1, . . . , lM−N) is a phase combination in the dual τ -function τM−N,M .

(iii) If π ∈ SM is the pairing map for a given equivalence class, then the pairing map for the
dual equivalence class is given by π−1.

Proposition 4.1 establishes a one-to-one correspondence between an equivalence class and its
dual. Indeed from equation (2.7), we have the following result for the dual equivalent classes.

Proposition 4.2. For given positive integers M,N , with N < M , the number of distinct
equivalence classes of the (M − N,N)-soliton solutions are exactly the same as the number
of dual equivalence classes of (N,M − N)-soliton solutions.

Remark 4.3. The open chord diagrams of the pairing maps π and π−1 which correspond to
a line-soliton equivalence class and its dual are related to each other via a reflection about the
horizontal line together with reversing the direction of the chords. This is due to the fact that
the excedance set of π−1 is given by {π(gn)}M−N

n=1 , while the anti-excedance set is given by
{π(en)}Nn=1. This transformation on the chord diagrams can be regarded as the combinatorial
analog of the inversion symmetry (x, y, t) → (−x,−y,−t) acting on the solutions u(x, y, t)

of the KPII line solitons.

When M = 2N , it follows from proposition 2.6 that N− = N+ = N , which leads to the
(N,N)-soliton solutions. In this case the number of asymptotic line solitons as y → ∞ and
y → −∞ are the same, but in general, the amplitudes and directions of the line solitons will
be different as seen for the (2, 2)-soliton examples in figure 5 of section 3. A particularly
interesting subclass of the (N,N)-solitons are the N-soliton solutions which were introduced
in section 1, and which are characterized by identical sets of asymptotic line solitons as
|y| → ∞, i.e., S− = S+. We discuss them next.
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4.2. The N-soliton solutions

This special family of line-soliton solutions of KPII consists of equivalence classes that
are invariant under the inversion symmetry (x, y, t) → (−x,−y,−t), that is, each equivalence
class is its own dual so that both u(x, y, t) and u(−x,−y,−t) belong to the same equivalence
class of solutions. This implies that for each N-soliton solution u(x, y, t) the asymptotic
line solitons arise in pairs, where each pair consists of a line soliton as y → ∞ and another
soliton as y → −∞, moreover, both line solitons have identical amplitude and direction.
Thus, a (N−, N+)-soliton solution of KPII is a N-soliton solution if and only if it is self-
dual, i.e., if and only if the index sets labeling the asymptotic line solitons satisfy S− = S+.
The main features of the N-soliton solutions follow from propositions 2.6, 2.9 and 4.1 and
definition 2.10. These are listed below.

Property 4.4.

(i) The τ -function of an N-soliton solution is expressed in terms of 2N distinct phase
parameters and an N × 2N coefficient matrix A which satisfies condition 2.2. Then
it follows from equation (4.2b) that the N ×N minors of A satisfy the duality conditions

A(m1, . . . , mN) = 0 ⇐⇒ A(l1, . . . , lN ) = 0, (4.5)

where the indices {m1, . . . , mN } and {l1, . . . , lN } form a disjoint partition of integers
{1, 2, . . . , 2N}. That is, the phase combination θ(m1, . . . , mN) is present in τN if and
only if θ(l1, . . . , lN ) is present.

(ii) Each N-soliton solution has exactly N asymptotic line solitons as y → ±∞. The
line solitons as y → ∞ and the line solitons as y → −∞ are identified by the
same set of index pairs {[en, gn]}Nn−1 such that π(en) = gn and π(gn) = en, with
en < gn, n = 1, . . . , N . The sets {e1, . . . , eN } and {g1, . . . , gN } label, respectively,
the pivot and non-pivot columns of the coefficient matrix A. Hence, they form a disjoint
partition of the integer set [2N ].

(iii) The amplitude and direction of the nth asymptotic line soliton [en, gn] are the same as
y → ±∞, given by an = kgn

− ken
and cn = kgn

+ ken
.

(iv) The pairing maps associated with N-soliton solutions are involutions of S2N with no
fixed points, defined by the set I2N = {π ∈ S2N |π−1 = π, π(i) �= i,∀i ∈ [2N ]}.
Such permutations can be expressed as products of N disjoint 2-cycles, and their chord
diagrams are self-dual, i.e. symmetric about the horizontal axis (see, e.g., the two-
soliton chord diagrams in section 3). The total number of such involutions is given
by |I2N | = (2N − 1)!! = 1 · 3 · · · · · (2N − 1) [5]. Hence, there are (2N − 1)!! distinct
equivalence classes of N-soliton solutions.

Examples of the N-soliton solutions with special choices of the functions {fn}Nn=1 in
equation (1.8) and the coefficient matrix A are given below.

Example 4.5. O-type N-soliton solutions. These are the well-known [10, 16] multi-soliton
solutions of KPII constructed by choosing {fn}Nn=1 according to

fn(x, y, t) = eθ2n−1 + eθ2n , n = 1, . . . , N.

The corresponding coefficient matrix is given by

AO =

⎛
⎜⎜⎜⎝

1 1 0 0 · · · 0 0
0 0 1 1 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · 1 1

⎞
⎟⎟⎟⎠ ,
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Figure 7. Three different three-soliton solutions of KPII with the same phase parameters
(k1, . . . , k6) = (−3, −2, 0, 1,− 3

2 , 2), illustrating the three equivalence classes: (a) O-type, (b)
T-type and (c) P-type three-soliton solutions.

with N pairs of identical columns at positions {2n − 1, 2n}, n = 1, . . . , N . Thus, there are
2N nonzero maximal minors of AO, given by AO(m1, . . . , mN) = 1, where mn = 2n − 1 or
mn = 2n for n = 1, . . . , N . The N asymptotic line solitons are identified by the index pairs
{[2n− 1, 2n]}Nn=1, and the corresponding permutation is π = (2, 1, 4, 3, . . . , 2N, 2N − 1) (or
π = (12)(34) · · · (2N, 2N − 1) in the cycle notation). The amplitude and direction of the nth
soliton are an = k2n −k2n−1 and cn = k2n−1 +k2n, respectively. Note that the soliton directions
are ordered as c1 < c2 < · · · < cN due to the ordering of the phase parameters kn. In fact,
the soliton parameters satisfy the inequalities: cn+1 − cn > an + an+1, n = 1, 2, . . . , N − 1.
Therefore, the asymptotic line solitons for the O-type solutions cannot take arbitrary values
of amplitude and direction, and thus do not cover the entire soliton parameter space as was
already noted for the two-soliton case in section 3.2. Apart from the position shift of each
soliton, the interaction gives rise to a pattern of N intersecting lines in the (x, y)-plane, as
shown in figure 7(a).

T-type N-soliton solutions. These solutions are obtained by choosing the functions in
equation (1.8) as

fn = f (n−1), n = 1, . . . , N with f (x, y, t) =
2N∑

m=1

eθm,

which yields the coefficient matrix

AT =

⎛
⎜⎜⎜⎝

1 1 · · · 1
k1 k2 · · · k2N

...
...

. . .
...

kN−1
1 kN−1

2 · · · kN−1
2N

⎞
⎟⎟⎟⎠ .

In this case all of the N ×N minors of the coefficient matrix A are positive, each being equal to
a Van der Monde determinant. These solutions were investigated in [4] where it was shown that
they also satisfy the finite Toda lattice hierarchy. The nth line-soliton is labeled by the index
pair [n, n + N ]; that is, its amplitude and direction are determined by the phase parameters
(kn, kn+N). The corresponding permutation is π = (N + 1, N + 2, . . . , 2N, 1, 2, . . . , N) (or
π = (1, N + 1)(2, N + 2) · · · (N, 2N)) whose open chord diagram has the maximum number
of crossings N(N − 1). This implies that the T-type N-soliton solution belongs to the top
cell of Gr+(N, 2N). Like the O-type N-soliton solutions, these T-type N-soliton solutions do
not cover the whole soliton parameter space. In this case the soliton parameters satisfy the
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constraints: |an+1 − an| < cn+1 − cn < an+1 + an, n = 1, 2, . . . , N − 1. It was also shown in
[4] that these soliton solutions display phenomena of soliton resonance and web structure as
shown in figure 7(b). Moreover, the intermediate interaction segments are also line solitons
because they satisfy the dispersion relation (1.7). All of the asymptotic and intermediate line
solitons interact via three-wave resonances. That is, at each interaction vertex or Y-junction
(cf figure 1(c)), the three interacting line solitons satisfy the resonance condition given by
equation (1.9).

P-type N-soliton solutions. Yet another type of N-soliton solutions is obtained by prescribing

fn(x, y, t) = eθn + (−1)N−neθ2N−n+1 , n = 1, 2, . . . N,

in equation (1.8). The coefficient matrix is given by

AP =

⎛
⎜⎜⎜⎜⎜⎝

1 0 · · · · · · 0 0 · · · · · · 0 ∗
0 1 0 · · · 0 0 · · · 0 ∗ 0
...

. . .
. . .

. . .
...

...
. . . . .

.
. .

. ...

0 · · · 0 1 0 0 −1 0 · · · 0
0 · · · 0 0 1 1 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠ ,

where the asterisk in the (2N − n + 1)th column is equal to (−1)N−n. Like AO, the matrix
AP also has N pairs of parallel columns labeled by {(n, 2N − n + 1), n = 1, . . . , N} and 2N

non-vanishing minors, and each nonzero minor is 1. The nth soliton is identified by the index
pair [n, 2N − n + 1], and the corresponding permutation is π = (2N, 2N − 1, . . . , 2, 1) (or
π = (1, 2N)(2, 2N − 1) · · · (N,N + 1)). The soliton direction and amplitude are given by
cn = kn + k2N−n+1 and an = k2N−n+1 − kn, respectively. Note that the soliton directions are
not ordered as in the previous two cases. In fact, taking c1 = c2 = · · · = cN = 0 yields the
reduction to solutions of the KdV equation [15]. But the soliton amplitudes in this case are
ordered as a1 > a2 > · · · > aN . Moreover, the soliton parameters satisfy the constraints:
|cn+1 − cn| < an − an+1, n = 1, 2, . . . , N − 1. These solutions interact non-resonantly, like
the O-type N-solitons, i.e., pairwise with an overall phase shift after collision (see figure 7(c)).
However, as in the case of the two-soliton solutions in section 3.2, the pairwise phase shifts
for P-type solitons is of opposite sign from that of O-type soliton solutions.

4.3. Soliton parameters and pairing map

The most notable differences between the O-, T- and P-type N-soliton solutions in
example 4.5 are that they span different regions of the soliton parameter space and that
they exhibit dissimilar interaction patterns and phase shifts. However, in addition to these
non-resonant and fully resonant solutions, a large family of partially resonant solutions exists
when N > 2. Thus, the family of N-soliton solutions of KPII is much larger than previously
thought, and their classification is indeed nontrivial. Even for N = 3, property 4.4(iv) implies
that there are 15 inequivalent types of three-soliton solutions. For increasing values of N, it
turns out to be a difficult task to classify these solutions according to their coefficient matrices,
as was done for N = 2 in section 3. Instead, a more direct approach is to enumerate the
N-soliton solutions via the involutions I2N ⊂ S2N , by constructing a representative coefficient
matrix A for each N-soliton equivalence class starting from a pairing map π ∈ I2N . In what
follows, we describe a slightly modified approach. We start with the set of amplitudes and
directions of the asymptotic line solitons as |y| → ∞. We first recover the soliton pairings
from this physical data, then construct the coefficient matrix A from the obtained pairing
map. This provides a method to algebraically reconstruct the N-soliton solution unique up to
spacetime translations, starting simply from the physical soliton parameters {(an, cn)}Nn=1.

23



J. Phys. A: Math. Theor. 41 (2008) 275209 S Chakravarty and Y Kodama

We begin with the following definition of the N-soliton parameter space.

Definition 4.6. An N-tuple of pairs pN := {(an, cn)|an > 0}Nn=1 ∈ R
2N , of amplitudes and

directions for the asymptotic line solitons associated with an N-soliton solution, is defined to
be admissible if it yields the set �N := {(

k−
n , k+

n

) ∣∣ k±
n = 1

2 (cn ± an)
}N

n=1 where the 2N phase

parameters
{
k±
n

}N

n=1 are distinct. The set Sol(N) of all admissible N-tuples of amplitudes and
directions will be referred to as the N-soliton parameter space.

Note that the pairs (an, cn), n = 1, . . . , N in the set pN are unordered. For example,
p2 = {

(1, 2),
(

1
2 , 1

)}
and p2 = {(

1
2 , 1

)
, (1, 2)

}
represent the same two-soliton solution.

Similarly, �N also consists of unordered pairs
(
k−
n , k+

n

)
, n = 1, . . . , N . However, since

the parameters
{
k±
n

}N

n=1 are distinct, they can be sorted in increasing order into an ordered
set K2N = (k1, k2, . . . , k2N). Hence, �N forms a partition of K2N into N distinct pairs.
The positions of each pair

(
k−
n , k+

n

) ∈ �N can be uniquely identified within K2N by an
ordered pair of indices [in, jn] such that in < jn. That is, k−

n = kin and k+
n = kjn

. It is
precisely this identification that induces a correspondence between each �N and a pairing
map π ∈ I2N ⊂ S2N , the latter representing a disjoint partition of [2N ] into N distinct pairs
(see property 4.4(iv)). It is then clear from definition 4.6 that this correspondence also extends
between each pN ∈ Sol(N) and a π ∈ I2N .

Example 4.7. Consider a three-soliton parameter set p3 = {
(a1, c1) = (1,−3), (a2, c2) =(

3
2 , 1

2

)
, (a3, c3) = (

3
2 , 5

2

)}
, and construct the set �3 = {

1
2 (cn ± an)

}3
n=1. The set p3

is admissible because the corresponding set �3 = {
(−2,−1),

(− 1
2 , 1

)
,
(

1
2 , 2

)}
contains

six distinct phase parameters. Sorting these parameters in increasing order yields K6 =(−2,−1,− 1
2 , 1

2 , 1, 2
) = (k1, k2, k3, k4, k5, k6). Then, �3 = {(k1, k2), (k4, k6), (k3, k5)}

which gives the correspondence p3 � �3 �→ (12)(35)(46) = π .

Note, however, that distinct elements of Sol(N) associated with solutions in the same
equivalence class give rise to identical pairing. In this situation, the corresponding sets �N

are distinct but after sorting, their elements are ordered in identical fashion into the respective
sets K2N . Thus, the soliton parameter space Sol(N) is partitioned into disjoint sectors. Each
sector corresponds to an equivalence class of solutions, distinguished by an element π ∈ I2N ,
equivalently, by the set {[en, gn]}Nn=1 labeling the N asymptotic line solitons. The total number
of such disjoint sectors of Sol(N) equals the cardinality |I2N | = (2N − 1)!!.

Once a pairing map π ∈ I2N is derived from a given N-soliton parameter set pN , it is then
possible to construct a coefficient matrix A satisfying condition 2.2. Clearly, the pivot columns
of A will be labeled by the excedance set {e1, . . . , eN } of π , and the non-pivot columns are
labeled by {g1, . . . , gN }, where π(en) = gn, n = 1, . . . , N . The explicit form of A will be
determined by using the rank conditions in proposition 2.6. Recall that in examples 2.7 and
2.8, we demonstrated how to apply the results of proposition 2.6 to a given coefficient matrix
A, and obtain the set of index pairs identifying the asymptotic line solitons. In the examples
below, we will illustrate the reverse construction. In other words, we will show that the rank
conditions of proposition 2.6 are also sufficient to construct a coefficient matrix A from a given
pairing map π associated with the N-soliton solutions.

Example 4.8. We outline the construction of a coefficient matrix A associated with the
three-soliton pairings {[1, 2], [3, 5], [4, 6]} found in example 4.7. The construction proceeds
in several steps.
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Step 1. It follows from property 4.4(ii) that the pivot and non-pivot columns of the 3×6 matrix
in RREF are labeled by {e1, e2, e3} = {1, 3, 4}, and {g1, g2, g3} = {2, 5, 6}, respectively. So,
the general form of A satisfying condition 2.2 is

A =
⎛
⎝1 z 0 0 v1 w1

0 0 1 0 −v2 −w2

0 0 0 1 v3 w3

⎞
⎠ ,

where z, {vi, wi}3
i=1 are non-negative numbers to be determined. Note that each unknown

entry can be expressed as certain maximal minors of A (e.g., A(234) = z, etc). The negative
signs in the second row are included so that the maximal minors of A satisfy the non-negativity
condition 2.2(i).

Step 2. In order to obtain further information about A, one needs to apply the rank conditions
in proposition 2.6 to the sub-matrices X[ij ] and Y [ij ] associated with each line soliton [i, j ].

If we start with the line-soliton [1, 2], and consider the sub-matrix Y [12] = ∅, we find
that rank(Y [12]) = 0. Then according to proposition 2.6(ii), rank(Y [12]|1, 2) = 1, so that
columns 1 and 2 are proportional. Hence, z �= 0. The sub-matrix X[12] consists of columns
3, . . . , 6 of A above. From proposition 2.6(i), it follows that rank(X[12]) � N − 1 = 2, since
N = 3. Then any maximal minor of A consisting of the columns of X[12] will vanish. In
particular, we find that A(345) = v1 = 0 and A(346) = w1 = 0, so that

A =
⎛
⎝1 z 0 0 0 0

0 0 1 0 −v2 −w2

0 0 0 1 v3 w3

⎞
⎠ .

Step 3. Next we consider the index pair [3, 5]. As the sub-matrix Y [35] = (0, 0, 1)T is of
rank 1, we obtain rank(Y [35]|5) = 2 from proposition 2.6(ii). Therefore, columns 4 and 5 of
A are linearly independent. Then v2 �= 0. The sub-matrix X[35] consisting of the columns 1,
2 and 6 of A, is of rank 2, because its column space is spanned by the linearly independent
columns (1, 0, 0)T and (0,−w2, w3)

T . Then from proposition 2.6(i), rank(X[35]|3) = 3 ⇒
A(136) = w3 �= 0, and rank(X[35]|5) = 3 ⇒ A(156) = v3w2 − v2w3 �= 0. Moreover,
the non-negativity of all maximal minors of A requires that z, v2, w3 and A(156) must be
positive. In particular, A(156) = v3w2 − v2w3 > 0 implies that v3 �= 0, w2 �= 0, so these
are also positive. Thus, the matrix A is parametrized by five positive parameters which can
be chosen as follows: t1 = z, t2 = v2, t3 = v3, t4 = w3/v3, t5 = w2/v2 − w3/v3. It can
be directly verified that all nonzero maximal minors of A are polynomials in t1, . . . , t5 with
positive coefficients.

Thus, we have constructed a five-parameter family of coefficient matrix A that will
generate the asymptotic line solitons [1, 2], [3, 5], [4, 6] for any choice of the positive
parameter values t1, . . . , t5, via proposition 2.6. Note that the vanishing minors of A satisfy
the duality conditions of equation (4.5). Furthermore, any such A together with the phase
parameters in the set K6 of example 4.7 would generate a three-soliton solution u(x, y, t) with
soliton parameters p3. This solution is unique up to spacetime translations corresponding to
different choices for the phase constants θm,0,m = 1, . . . , 6 in equation (1.5).

We make a few observations from the above example. First, note that the rank conditions
together with non-negativity of the maximal minors completely determine which maximal
minors of A are zero, and which are nonzero. Second, the non-vanishing maximal minors are
chosen to be positive by expressing them in terms of a suitable set of freely prescribed positive
parameters which are rational expressions in the matrix elements of A. This parametrization
completely determines the coefficient matrix A which is in RREF because all the entries in
its non-pivot columns can be expressed as appropriate maximal minors. Third, both rank
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conditions (propositions 2.6(i) and (ii)) are applied to the same index pair [en, gn] since it
labels a pair of asymptotic line solitons as |y| → ∞. Instead, one could also apply the rank
conditions from either proposition 2.6(i) or (ii) to each index pair, and recover the remaining
information from the duality condition equation (4.5). For example, since columns 1 and 2 are
proportional for the coefficient matrix A of example 4.8, the minors A(125) = A(126) = 0.
Then the duality condition implies that A(346) = A(345) = 0 as we found in step 2. We also
point out here that in [15] the N-soliton τ -function was required to satisfy a set of conditions,
which was referred to as the ‘N-soliton condition’ (definition 4.2 of [15]). These conditions
follow directly from the rank and duality conditions discussed in this paper. We reiterate the
above observations through another example.

Example 4.9. In this example, we construct a four-soliton solution starting with the following
set of soliton parameters: p4 = (an, cn)

4
n=1 = {

(1,−3),
(

3
2 ,− 3

2

)
,
(

3
2 , 1

2

)
, (1, 2)

} ∈ Sol(4).

Step 1. First, we construct the set �4 = {
(−2,−1),

(− 3
2 , 0

)
,
(− 1

2 , 1
)
,
(

1
2 , 3

2

)}
from p4 using

k±
n = 1

2 (cn ± an). Then we obtain the ordered set K8 = (−2,− 3
2 ,−1,− 1

2 , 0, 1
2 , 1, 3

2

) =
(k1, . . . , k8) by sorting the phase parameters in �4 which can now be re-expressed
as �4 = {(k1, k3), (k2, k5), (k4, k7), (k6, k8)}. This gives the correspondence �4 �→
(13)(25)(47)(68) = π ∈ I8, where π is expressed as products of disjoint 2-cycles. The
asymptotic line solitons are identified by the set {[1, 3], [2, 5], [4, 7], [6, 8]} of index pairs.

Step 2. We proceed to construct the coefficient matrix A that will generate the τ -function
of the four-soliton solution. As in the previous example, we start with the 4 × 8 matrix A

satisfying condition 2.2:

A =

⎛
⎜⎜⎝

1 0 −z1 0 u1 0 −v1 −w1

0 1 z2 0 −u2 0 v2 w2

0 0 0 1 u3 0 −v3 −w3

0 0 0 0 0 1 v4 w4

⎞
⎟⎟⎠ ,

whose pivots and non-pivot indices are {e1, e2, e3, e4} = {1, 2, 4, 6}, and {g1, g2, g3, g4} =
{3, 5, 7, 8}, respectively, and where z1, z2, u1, u2, u3 and vi, wi, i = 1, . . . , 4 are non-negative
reals to be determined.

Step 3. We then apply the rank conditions from proposition 2.6 systematically to each soliton
index pair [i, j ], and collect all the information regarding the unknown entries in terms of zero
and nonzero minors of A. Here we indicate only the essential steps.

Consider the index pair [1, 3] and the associated sub-matrix X[13] which consists
of columns 4, . . . , 8 of A above. Since rank(X[13]) � N − 1 = 3, the maximal
minors: A(l1, . . . , l4) = 0, {l1, . . . , l4} ⊂ {4, 5, 6, 7, 8}. For the index pair [6, 8], the sub-
matrix Y [68] = (−v1, v2,−v3, v4)

T is clearly of rank 1. Then from proposition 2.6(ii)
rank(Y [68]|6, 8) = 2, which implies that A(l, 6, 7, 8) = 0 for any l ∈ [8]. Putting
these conditions together, it can be shown that all vanishing minors of A obtained via
proposition 2.6 are generated by the following relations:

uivj − ujvi = 0, uiwj − ujwi = 0, i, j = 1, 2, viwj − vjwi = 0, i, j = 1, 2, 3.

(4.6)

Next we determine the nonzero entries of A. Note that z1 �= 0 since columns 2 and 3 of A are
linearly independent. This is because the sub-matrix Y [13] = (0, 1, 0, 0)T associated with
the index pair [1, 3], is of rank 1, then proposition 2.6(ii) implies that rank(Y [13]|3) = 2.
Consider now the sub-matrix Y [47] whose rank is 2 since it is spanned by the linearly
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Figure 8. (a) A three-soliton solution of example 4.8 at t = 12, generated by the coefficient
matrix A with parameter values: z = v2 = w2 = 1, v3 = 3, w3 = 5

3 ; (b) a four-soliton
solution of example 4.9 at t = 20. The parameters of the coefficient matrix A are given by
z1 = u1 = u2 = v1 = v2 = v3 = 1, z2 = u3 = v4 = w1 = w2 = w3 = 2, w4 = 3.

independent columns 5 and 6 of A. Then columns 4, 5 and 6 are also linearly independent as
rank(Y [47]|4) = 3. Moreover, these columns also span the column space of the sub-matrix
X[13] and form a basis which we denote by β13. By similar reasoning, we find the basis sets
β25 and β47 for the column spaces of X[25] and X[47], respectively. These are given by

β13 =

⎛
⎜⎜⎝

0 u1 0
0 −u2 0
1 u3 0
0 0 1

⎞
⎟⎟⎠ , β25 =

⎛
⎜⎜⎝

1 0 −v1

0 0 v2

0 0 −u3

0 1 v4

⎞
⎟⎟⎠ , β47 =

⎛
⎜⎜⎝

1 0 −w1

0 1 w2

0 0 −w3

0 0 w4

⎞
⎟⎟⎠ .

Since both rank(X[13]|1) = rank(X[13]|3) = 4, using the basis β13 we get A(1456) =
u2 > 0, and A(3456) = z2u1 − z1u2 > 0 where we also required that the nonzero maximal
minors to be positive. In addition, if we take z1 > 0 (since z1 �= 0 from above), then
z2 > 0, u1 > 0, as well. Proceeding in a similar fashion with β25 and β47 we find that
that u3, v2, v3, v4, w3, w4 are all positive. Then from equation (4.6), we finally conclude
that all entries in the non-pivot columns of A are nonzero unlike the previous example.
However, these nonzero elements must satisfy the three independent constraints arising from
equation (4.6). Furthermore, by direct computation using the matrix elements of A we find
that all vanishing minors of A are in fact generated by the relations in equation (4.6) which
arise from the rank conditions of proposition 2.6.

As in example 4.8, it is possible to construct a set of positive parameters such that all
nonzero maximal minors of A are polynomials in these parameters with positive coefficients.
These are given by

t1 = z1, t2 = z2, t3 = u1

z1
− u2

z2
, t4 = u2

z2
, t5 = u3,

t6 = v2

u2
− v3

u3
, t7 = v3

u3
, t8 = v4, t9 = w4

v4
− w3

u3
, t10 = w4

v4
.

Figure 8(a) shows a three-soliton solution with soliton parameters given in example 4.7 and a
coefficient matrix A constructed in example 4.8. Figure 8(b) shows a four-soliton solution with
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soliton parameters and matrix A from example 4.9. It should be noted that the above examples
are only illustrations of the general result asserting that for every pairing map π ∈ I2N there
exists a parametrized family of N × 2N matrices A which satisfy condition 2.2 and generate
an equivalence class of N-soliton solutions. The proof of this remarkable result will be given
in a future work [7].

4.4. Combinatorics of N-soliton solutions

Further refinement of the N-soliton classification scheme can be achieved by studying the
combinatorial properties of the associated N × 2N coefficient matrix A. We have already
shown that the N-soliton solution space is characterized by the set I2N of fixed point free
involutions of the permutation group S2N . In turn, these involutions of S2N can be enumerated
in terms of the various possible arrangements of the pivot and non-pivot columns of the
N-soliton coefficient matrix A. A more geometric classification of the N-soliton solutions
using Schubert decomposition of the real Grassmannian Gr(N, 2N) has been carried out in
[15] where the arrangements of pivot and non-pivot indices were described in terms of Young
diagrams. We resort to a more elementary treatment here and present the main results below.

Proposition 4.10. Suppose that the index sets {e1, . . . , eN } and {g1, . . . , gN } with en <

gn, n = 1, . . . , N , form a disjoint partition of [2N ], and label respectively, the pivot and
non-pivot columns of a coefficient matrix A associated with a N-soliton solution of KPII.
Then, the following results hold.

(i) The index set {e1, . . . , eN } is ordered as follows: 1 = e1 < e2 < · · · < eN < 2N .
Moreover, the elements satisfy n � en � 2n − 1, n = 1, . . . , N .

(ii) The total number of choices CN for the ordered set {e1, . . . , eN } in item (i) is given by the
Nth Catalan number (see, e.g. [27]),

CN = (2N)!

N !(N + 1)!
. (4.7)

(iii) The set {g1, . . . , gN } is unordered, and the element gn can be chosen in 2n − en ways
for n = 1, . . . , N . Therefore, the number of possible choices for the unordered set
{g1, . . . , gN } for each set {e1, . . . , eN } is given by

m(e1, . . . , eN) =
N∏

n=1

(2n − en). (4.8)

It follows from proposition 4.10 that the total number of distinct equivalence classes of
N-soliton solutions satisfies the curious combinatorial identity

FN :=
∑

e1<···<eN ,

n�en�2n−1

m(e1, . . . , eN) = (2N − 1)!!, (4.9)

which can be proved by following a similar line of argument that is provided below in the
proof of proposition 4.10(ii). Items (i) and (iii) of proposition 4.10 were already proved in
[15].

Proof. (Proposition 4.10(ii)) Let EN denote the set of all N-tuples (e1, . . . , eN) for which
proposition 4.10(i) holds. Then it is clear that |EN | = CN . Since e1 = 1, each N-tuple
contains one or more indices satisfying em = 2m − 1,m = 1, . . . , N . Then by sorting the
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elements of EN according to the largest positive integer n ∈ [N ] such that en = 2n − 1, we
obtain the disjoint partition

EN =
N⊔

n=1

Wn, where Wn = {(e1, . . . , eN)|en = 2n − 1, em < 2m − 1,m > n}.

Note that Wn can be expressed as the direct product: Wn = En−1 × {en = 2n − 1} × ÊN−n,
where the set En−1 = {(e1, . . . , en−1)} with j � ej � 2j −1, j ∈ [n−1], is defined similarly
as EN , and where ÊN−n = {(en+1, . . . , eN)} with 2n+j −1 � en+j < 2(n+j)−1, j ∈ [N−n].
If we define new indices êj := en+j − (2n − 1), j = 1, . . . , N − n and relabel the elements
of ÊN−n, then it should be clear that

ÊN−n � {(̂e1, . . . , êj )|j � êj � 2j − 1} =: EN−n.

Now the cardinalities of En−1 and ÊN−n are Cn−1 and CN−n, respectively. Then it follows
from above that |Wn| = Cn−1CN−n, and

|EN | = CN =
N∑

n=1

Cn−1CN−n. (4.10)

Equation (4.10) is the well known recursion relation for the Catalan numbers [5, 27]
CN,N � 1 with C0 := 1. If C(z) = ∑∞

N=0 CNzN is the generating function of the CN , then
equation (4.10) implies that C(z) satisfies zC2(z) − C(z) + 1 = 0. This yields

C(z) = 1 − √
1 − 4z

2z
=

∞∑
N=0

(2N)!

N !(N + 1)!
zN,

by choosing the root consistent with C(0) = C0 = 1, then expanding it in power series.
Finally, we obtain the desired result by equating the coefficients of the two power series for
C(z). �

In view of proposition 4.10(i), it is natural to associate with each ordered set {e1, . . . , eN }
a weight vector w and its length ‖w‖ defined by

w := (w1, w2, . . . , wN), where wn := en − n � 0, n ∈ [N ],

and ‖w‖ :=
N∑

n=1

(en − n), (4.11)

respectively. Note that the weights form a non-decreasing sequence: 0 = w1 � w2 � · · · �
wN and 0 � wn � n − 1. Similarly, we associate the unordered set of non-pivot indices
{g1, . . . , gN } with an inversion vector σ defined by

σ := (σ1, σ2 . . . σN), where σn := |{gj |gj > gn, j < n}|, n ∈ [N ]. (4.12)

The inversions satisfy 0 � σn � 2n − en − 1, n = 1, . . . , N . The upper limit of σn follows
from proposition 4.10(iii), by placing gn to the leftmost of the 2n− en available positions, and
filling the remaining positions with indices gj such that j < n. Note that the pair of vectors
(w, σ ) are related to the pair (Y +, Y−) of Young diagrams introduced in [15].

The results of proposition 4.10 together with the weight and inversion vectors provide
a refinement of the classification scheme for the N-soliton solutions. We illustrate here the
refined scheme for N = 3. In this case, A is a 3 × 6 matrix with three pivots satisfying
e1 = 1, 2 � e2 � 3, 3 � e3 � 5. From proposition 4.10(ii), the total number of pivot
configurations {e1, e2, e3} is given by the Catalan number C3 = 5. Thus, there are five
subclasses of three-soliton solutions depending on five distinct pivot configurations which
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Table 1. Weight vectors and possible pivot arrangements for three-soliton solutions.

‖w‖ w {e1, e2, e3}
0 (0, 0, 0) {1, 2, 3}
1 (0, 0, 1) {1, 2, 4}
2 (0, 0, 2) {1, 2, 5}

(0, 1, 1) {1, 3, 4}
3 (0, 1, 2) {1, 3, 5}

Table 2. The 15 distinct three-soliton solutions.

{e1, e2, e3} {g1, g2, g3} σ Three-soliton solution

{1, 2, 3} {4, 5, 6} (0, 0, 0) {[1, 4], [2, 5], [3, 6]}
{4, 6, 5} (0, 0, 1) {[1, 4], [2, 6], [3, 5]}
{5, 4, 6} (0, 1, 0) {[1, 5], [2, 4], [3, 6]}
{5, 6, 4} (0, 0, 2) {[1, 5], [2, 6], [3, 4]}
{6, 4, 5} (0, 1, 1) {[1, 6], [2, 4], [3, 5]}
{6, 5, 4} (0, 1, 2) {[1, 6], [2, 5], [3, 4]}

{1, 2, 4} {3, 5, 6} (0, 0, 0) {[1, 3], [2, 5], [4, 6]}
{3, 6, 5} (0, 0, 1) {[1, 3], [2, 6], [4, 5]}
{5, 3, 6} (0, 1, 0) {[1, 5], [2, 3], [4, 6]}
{6, 3, 5} (0, 1, 1) {[1, 6], [2, 3], [4, 5]}

{1, 2, 5} {3, 4, 6} (0, 0, 0) {[1, 3], [2, 4], [5, 6]}
{4, 3, 6} (0, 1, 0) {[1, 4], [2, 3], [5, 6]}

{1, 3, 4} {2, 5, 6} (0, 0, 0) {[1, 2], [3, 5], [4, 6]}
{2, 6, 5} (0, 0, 1) {[1, 2], [3, 6], [4, 5]}

{1, 3, 5} {2, 4, 6} (0, 0, 0) {[1, 2], [3, 4], [5, 6]}

are determined by the associated weight vectors. These subclasses are listed in table 1 in
increasing order of the length ‖w‖ of the weight vector. For each of these pivot arrangements,
proposition 4.10(iii) gives the total number of distinct non-pivot configurations. Each set
{g1, g2, g3} in a given subclass is distinguished by its unique inversion vector. The various
three-soliton solutions in each subclass are shown in table 2, and the associated chord diagrams
are presented in figure 9. Note that instead of open chord diagrams we use circles in
figure 9. Here each straight chord replaces the pair of upper and lower chords connecting
the same index pair [en, gn] in the self-dual, open chord diagrams of the N-soliton solutions
(cf property 4.4(iv)).

The subclass associated with the pivot configuration {1, 2, 3} is isomorphic to the
permutation group S3 acting on {4, 5, 6} to form the non-pivot sets {g1, g2, g3}. These are
arranged in the second column of table 2 according to the non-decreasing order of the L1-norm
|σ | = σ1 + σ2 + σ3 of the respective inversion vectors in the second column of table 2. The
corresponding set of diagrams forming a hexagon in figure 9 is the permutahedron for S3. On
the other hand, when {e1, e2, e3} = {1, 2, 4} the non-pivot index g3 is chosen in 2 × 3 − 4 = 2
ways; g2 is chosen in 2 × 2 − 2 = 2 ways; and obviously there is only one way to choose
g1. Thus, there are only 4 (instead of 6) possible ways the non-pivot columns 3, 5 and 6 can
be arranged to form the set {g1, g2, g3}. This is due to the restriction that g3 �= 3 because
according to proposition 4.10, g3 must be greater than e3 = 4. The chord diagrams with the
pivot set {1, 2, 4} form a square which is a subpolytope of the permutahedron of S3. We will
discuss the polytope structure for the N-soliton solutions in [7].
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(456)

(546) (465)

(564) (645) (346)(256)

(246)(436)(265)(654) (635)

(536) (365)

(356)

Figure 9. The circular chord diagrams for three-soliton solutions. On each circle, the indices are
increasing clockwise from the top. The dots on each diagram indicate the pivots (e1, e2, e3), and
the ordered numbers below the diagrams indicate (g1, g2, g3). The number of the diagrams having
the same number of crossings is given by the generating function F3(q) = q3 + 3q2 + 6q + 5, where
5 is the Catalan number C3 = F3(0).

With the circular chord diagrams for the sets {e1, . . . , eN } and {g1, . . . , gN }, one can find
a q-analog of the function m(e1, . . . , eN) in equation (4.8) defined by

m(e1, . . . , eN)(q) =
N∏

n=1

[2n − en]q =
cmax∑
c=0

mcq
c.

Here mc gives the number of the circular chord diagram having c crossings, and the maximum
number of crossings for given {e1, . . . , eN } is [7]

cmax = N2 −
N∑

n=1

en.

For example, when {e1, e2, e3} = {1, 2, 3} and {e1, e2, e3} = {1, 2, 4}, we have

m(1, 2, 3)(q) = q3 + 2q2 + 2q + 1 and m(1, 2, 4)(q) = q2 + 2q + 1,

corresponding to the hexagon and square in figure 9. Note that m(e1, . . . , eN)(q = 1) =
m(e1, . . . , eN). One can also define a q-analog of the function FN in equation (4.9) which
gives the number of circular chord diagrams having c crossings for given N, i.e. the number of
N-soliton solutions having c T-type pairwise interactions among the N asymptotic line solitons:

FN(q) :=
∑

{e1,...,eN }
m(e1, . . . , eN)(q).

31



J. Phys. A: Math. Theor. 41 (2008) 275209 S Chakravarty and Y Kodama

For example, we have F3(q) = q3 + 3q2 + 6q + 5 as is evident from counting the number
of circular chord diagrams (from bottom to top) at each crossing level in figure 9. Note also
that FN(1) = FN and FN(0) = CN , the Nth Catalan number which equals the number of
possible pivot configurations [{e1, . . . , eN }], as well as the number of chord diagrams with no
crossings. The latter case represented by the diagrams in the top row of figure 9 yields the
number of N-soliton solutions with only P- and O-type interactions among the N line solitons.
Furthermore, if we define the generating function by

F(q, x) :=
∞∑

N=0

FN(q)xN,

then it is possible to show that F(q, x) can be expressed by the continued fraction of the
Stieltjes type,

F(q, x) = 1

1 − x[1]q

1 − x[2]q

1 − x[3]q
1 − · · ·

,

with F0(q) = 1. A proof can be found in [6] (see also [14]).
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